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We present a large-scal86 000-particle computational study of the “inherent structured’S) associated
with equilibrium, two-dimensional, one-component Lennard-Jones systems. Our results provide strong support
both for the inherent-structures theory of classical fluids, and for the Kosterlitz-Thouless-Halperin-Nelson-
Young theory of two-stage melting in two dimensions. This support comes from the observatibreef
qualitatively distinct “phases” of inherent structures: a crystal, a “hexatic glass,” and a “liquid glass.” We
also directly observe, in the IS, analogs of the two defect-unbinding transitiesgectively, of dislocations
and disclinationsbelieved to mediate the two equilibrium phase transitions. Each transition shows up in the
inherent structures, although the free disclinations in the “liquid glass” are embedded in a percolating network
of grain boundaries. The bond-orientational correlation functions of the inherent structures show the same
progressive loss of order as do the three equilibrium phases: long-rangeasi-long-range— short-range.
[S1063-651%98)13209-9

PACS numbgs): 61.20.Gy, 64.70.Dv, 61.72.Bb, 61.43.Fs

I. INTRODUCTION namic limit, the density-of-states function is essentially ex-

ponential in the number of particles:
Some years ago, Stillinger and Weléy introduced a _
theory of liquids, based on the partitioning of the configura- G(N.p)~exiNg(p)], (1.2

tion space into potential-enerdE) basins Each of these  which permits a maximum-integrand evaluation of the inte-
basins contains a single PE minimum, to which all othergrg| overp. p* is the value ofp that maximizes the inte-
points within the basin are connected via steepest-desceftand for a given set of thermodynamic conditidasy., vol-
paths. The PE minima were coined “inherent structures”yme and temperature

(ISs); all other configurations are taken to be vibrational ex-  The partition function may be further transformed by
citations of them. This approach allows for the decomposiyiting the potential energy as

tion of the configurational partition function into a sum, over

PE basins, of intrabasin terms. The resulting partition func- P(r)=T,+A4,P(r), w3

tion may be approximated as follows: where® , is the “structural energy’(the PE of the IS of the

occupied basinand A ,®(r) is the “vibrational energy”
_ ~| G dp~ G(p* .. 1.1 (the difference between the total PE and the structural en-
Q ; Qu f (P)Qpdp~G(p™)Qp @3 ergy). This allows the generic basin partition function to be
written as

In the first step of this transformation, one splits the partition Q.= exp(—@alkBT)Q’;'b, (1.4
function into a sum over “basin partition functions(the

usual Boltzmann integral, limited to configurations within a Where

given basin, « being the basin index. This step is exact in _

principle. The second step transforms this sum into an inte- Q';'b=J exp—A,P/kgT)dr. (1.5
gral, via the introduction of thégenerally vector-valued R(a)

structural parameterp, characterizing the ISs. Typically, Here,R(«) limits the integration to basin, andkg is Bolt-
this parameter would include such information as averagemann’s constant. Hence, the total partition function, as
coordination numbers, densities and spatial distributions ofjiven by Eq.(1.1), becomes

defects, etcG(p) is a density-of-states function, enumerat-

struct~vib
ing the basins having a given value pf Q, is then the Q=Qpx p* (1.6
corresponding constrained partition function. This step in the\:/vhere
transformation inevitably loses some information through the
necessity to make finite-dimensional. The final step of the QZi’”Ct:G(p*)exp(—CDp* IkgT). (1.7

transformation is a result of the fact that, in the thermody-
Phase transitions are defined by singularities in the free en-

ergy,Fconi= —kgTINQ. Thus, in order for a phase transition

*Present address: School of Chemistry and Biochemistry, Georgitp occur, there must be singularities @;Eum, leb, or
Institute of Technology, Atlanta, GA 30332-0400. both. The evident unlikelihood of such singularities, without
TElectronic address: geoffc@sapphire.phys.utk.edu discontinuities inp* (that is to say, in the types of basins
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occupied, implies that the existence of marked differences[14]. To make an elastic defect, one takes an unstrained elas-
between the IS associated with different phases is a practicit medium and introduces one or more topological
requirement for the applicability of the inherent-structureschanges—yielding one or more topological defects—by cut-
theory (IST) to systems exhibiting phase transitions. Thisting, shifting, and gluing. The next step is to invoke the
requirement has been shown to be satisfied for certain threéequations of equilibrium”—which require that there be no
dimensional3D) systemg2]. Also, some limited results3]  net force at any point in the mediumat-constant topology
have been obtained for 2D systems. This then gives the strain field, which, in turn, gives the

Recently, we[4,5] have performed extensive numerical self-energies and energies of interaction for the defects. The
studies of inherent structures in simple, single-componenassumption of constant topology is crucial, because it is the
fluids in 2D. An early study4] extended the range of such topology that defines the elastic problem to be solved. How-
studies toN=4096 particles, but foundas expectedonly  ever, it is important to note that this camnly be an assump-
evidence for two phasésolid and liquid. More recently{5]  tion in the continuum theory: in the absence of a microscopic
we extended these studies =36 864 particles. This atomic structure in the fluid, there is no reason to expect any
choice of system size was motivated by earlier moleculardislocation to be pinneg¢against the calculated forces of at-
dynamics studiefs,7] giving strong, but not conclusive, evi- traction or repulsionat any point in the medium, except “by
dence for an intermediate, hexatic phase for systems of thisgand.”
size and large(see also Ref8]). Referencg5] gave a brief Thus we cannot expect to see such structures as free dis-
report of the principal results reported here. In this paper, wédocations in anymechanically stableconfiguration, unless
offer a detailed discussion of our computational methods angome justification can be given for this assumption of con-
results. We also provide a clear picture of the disclination-stant topology. For the case of dislocations, this justification
unbinding “transition” in the IS—a result that was not clear comes in the form of the Peierls-Nabarro potertid]. This
in [5]—and some calculations of the disclination charge-is a periodic “corrugation” in the interdislocation potential,
charge correlation function in the equilibrium fluids. Thesearising from the underlying microscopic structure of the ma-
latter calculations provide further evidence for disclinationterial. This potential is well known to be capable of pinning
unbinding at the hexatic/liquid transition. dislocations, such that arrays of dislocations may be rendered

Roughly contemporaneously with the development ofmechanically stable. This leads us to anticipate that the con-
IST, Halperin and NelsotHN) [9], following work on the figurations of dislocations trapped in our numerically ob-
melting of 2D solids by Kosterlitz and Thoule§$0], pre- tained IS may in fact provide useful insight into the equilib-
dicted a two-stage melting mechanism for 2D systems. Aium defect structureswithout the almost overwhelming
number of results on the first stage of melting were obtainednoise” associated with the vibrations about the IS, occur-
independently by Youngl1] (see also Nelsofil2]). In the ring in thermal equilibrium.
resulting picture of two-stage melting, commonly called the There is less justification for this assumption, as applied
KTHNY theory, each successive phage order of increas- to disclinations. In fact, there is reason to doubt the mechani-
ing energy is characterized by the presence of an additionatal stability, and hence the presence in IS, of free disclina-
type of defect: the solid contains only dislocations, bound intions [14]. The question is then, can the inherent-structures
pairs; the intermediatéhexaticphase adds unbound disloca- idea, invoking as it does a qualitative difference in IS be-
tions; and the liquid further adds unbound disclinations. At-tween different thermodynamic phases, be reconciled with
tendant to this progression of defects are differences in ththe KTHNY picture of melting(hexatic — liquid) by the
bond-orientational correlation function, which exhibits long- unbinding of disclinations—even when there is good reason
range order, power-law decay, and exponential decay for tht® expect that no free disclinations can be seen in mechanical
solid, hexatic, and liquid phases, respectivéRor a detailed equilibrium (i.e., in any 13? We provide a conclusive
review of the KTHNY theory and the defects involved, see(yes”) answer to this question, below, while at the same
the review of Strandbur§il3].) Since KTHNY predicts the time failing to find any evidence for mechanical stability of
existence othreecondensed phases, for which IST requiresfree disclinations.
an equal number of distinct classes of 1S, 2D would seem to Our results reveal an extremely clean correspondence be-
offer an ideal testing ground for IST. Furthermore, it seemgween the predictions of the KTHNY theory of two-stage
that a study of the ISs underlying the different phases in 2Dnelting and the inherent structures associated with each ther-
systems might provide novel and useful microscopic evi-modynamic phase. Previously, the principal barrier to this
dence for the defect-unbinding transitions expected from theort of study has been the difficulty associated with finding
theory—assuming that such defects can be “trapped” by théhe hexatic phase in simulatiofi$5], in part due to limita-
guenching proceduréwhich yields the mechanically stable tions in system size. Boundary conditions and equilibration
inherent structure from a snapshot configuration at thermanethods may also play an important role. The simulations in
equilibrium). Indeed, the defects present in each equilibriumRefs. [6] (N>100 000) and[8] (N~65 000) gave some
phase should also show up in the IS underlying that phase-ecompelling evidence for the hexatic phase. However, this
but much more clearly, due to the attendant removal of thgghase was found to be onfgetastablehermodynamically in
vibrational distortions present at equilibriunitthese de- [6]; and the differences in method and boundary conditions
fects are mechanically stable. Before discussing our numerin the two studies leave some room for controversy. Our own
cal results, then, we will discuss the question of the mechanistudies use a system sizél{ 36 000) for which a meta-
cal stability of the defects—dislocations and disclinations. stable hexatic phase appeared in the study of Rgf.with

The interaction energies of the defects are typically calquenches from the “equilibrium” hexatic phase being taken
culated by well known methods of linear elasticity theoryfrom snapshots in this metastable thermodynamic state. We
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believe that our results, revealing as they do three classes 4e[(alr)2—(alr)®]+ V., r<rg,
(one clearly “hexatic’) of IS for these fluids—classes that V(r)= 0 (= (2.2
are expected to persist in the thermodynamic limit—provide ' e
further support for the hypothesis that the hexatic phase igheree and o are parameters, is the interatomic distance,
thermodynamically stable, in some region of the phase diar_ is the cutoff radius, and

ram, forN—oo. This evidence is distinct from, and comple-
?nentary to, that obtained from equilibrium studies. Our re- Ve=—4e[(alre)*~(alro)°]. 2.3
sults also further strengthen the basic premise of inherenfy ynits in whiche, o, kg, andm (the atomic magsare all
structures theory: that distinct thermodynamic phases argqual to 1—units which we use throughout this paper—the

such that singularities in thermodynamic functions may be

ascribed to discontinuities in the occupation probabilities of N=36 864,
potential-energy basins, at a phase boundary. Peyi= 20,
Il. COMPUTATIONAL PROCEDURE <215 (crysta),
Texy =2-154 (hexatio, (2.9

In order to study inherent structures, one first needs start- )
ing configurations, taken as snapshots from thermal equilib- =2.17  (liquid),
rium. In the present study, these were obtained directly from r =4
the molecular-dynamic@MD) simulations described in Ref. ¢ v
[6], which made use of a computational framework described At=0.0005,
by Melchionna, Ciccotti, and Holian(MCH) [16]— . .
specifically, a constaritfPT molecular dynamics simulation, Wherel_\l Is, of course, the ”“T‘?be_r of partl_cles. -
using the Parrinello-Rahmali7] shape-varying box with Ha_vmg obtameo_l an_ equilibrium conflg_uratloﬁnn the
periodic boundary condition$BCs). Let us, then, give a hexg_tlc_case, th_|s is only a thermodynamlcarli;etastable
brief summary of those aspects of this framework that aré&duilibrium[6]), in order to find the associated IS one must
most relevant to the present study, the details being availabh?:erform a gteepest—descent minimization of the tc_)tal potential
in Ref. [16]. energy, which, for the current constdPtzase, consists of the

For the sake of simplicity, we will outline the method for total interparticle potential pluB.,.V. In practice, this is too

the case of isotropic volume fluctuations and then state thiMe consuming to be practicg] for the large system size

changes necessary to account for the shape-varying box. T the current study—indeed, it is impractical for all but the
MCH equations of motion, for the case of isotropic V0|umesmallest systems. Instead, we make use of the above-outlined

fluctuations, are MD method. Beginn_ing with an equilibrium configuration,
we first zero all particle velocities and the velocities of the
N “box walls.” We then run the MD simulation at very low
ri:ﬁf 7(1i=Ro), temperature Ty Something like 10° to 10 * of the equi-
librium temperaturg carefully adjusting the thermostating

pi=Fi—(n+0)p;, and barostating rates, such that the instantaneous temperature
remains very close td.,; and the PE smoothly decreases
=2 T } 2.1) with the time. Furthermore, the PE is checked at each time
T Text ' ' step, and if an increase is found, we go back to a previous

configuration(saved before the occurrence of the incr¢ase
rezero the velocities, and restart the simulation. This process
is continued until the duration of the MD rufiise., before a
) PE increase occurdecomes only a few time steps. At this
V=dVz. point, we run the MD simulation at the same, very low tem-
peraturgland without, of course, the requirement of a strictly
Here,r;, p;, andm; are the position, momentum, and mass,decreasing P long enough(typically something like 19
respectively, of particlé. F; is the instantaneous force acting time steps to ensure that the system is, indeed, vibrating
on particlei, andR is the center of mass of the systemis  about a PE minimum. If this test is successful, we have an
a barostating factor that tends to restore the instantaneous. (At such low temperatures, the vibrations are of small
pressureP(t) to the preset valuB,,;. It is modulated by the enough amplitude to be negligible for structural consider-
adjustable parameters, which is termed the “barostating ations) Otherwise, we continue the minimization procedure,
rate.” Similarly, { serves to equilibrate the temperature anduntil a minimum is found that does pass our test.
is tuned by way of the “thermostating ratet;. V is the Of course, the structures obtained from the above-outlined
volume andd is the dimensionality. The main alterations to minimization procedurghereafter referred to as “quench-
Eqg. (2.1), needed to accommodate a shape-varying box, ar@g”) will, in general, differ from the “true” IS, connected
the change in the scalassandP to tensors and the replace- by a steepest-descent path to the starting equilibrium con-
ment ofV with a “box matrix” whose columns are the basis figuration. However, the very low temperatures—which is to
vectors of the box. The basic form of the equations remainsay very small particle momenta—maintained throughout the
that of Eq. (2.1). The potential used was of the shifted quenching process ensure that the system trajectory nearly
Lennard-Jones form, [18] follows the steepest-descent path prescribed by IST.

2

. VP
n= mV[P(t)— Pextls
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(@) (b)

FIG. 1. (@ A snapshot configuration taken from the solid phase in thermal equilibrium; the particle numiker36 864 and the
(dimensionlesssnapshot temperature &=1.988. Only the positions of atoms that are not sixfold coordinated are shown. The outer
parallelogram shows the periodic boundaries of the deformable 2D box in which the MD simulations takébpl@be.inherent structure
obtained from(a) by “quenching”; i.e.,(nearly steepest-descent minimization of the potential enérgyP.,V [whereU is the interaction
energy,P.,= 20 the external pressure, aWdhe (variable, two-dimensionalolume]. The reduction in defect number fro@) is dramatic.
Although it is not possible here, close examination of the defectb)ishows that there are no dislocations that are not closely bound into
neutral composites.

Also, according to IST, fluid systems at equilibrium transitatoms by their coordination numbémostly 5 or 3. Figure
frequently andexclusively(at least folN—«) betweerther-  1(b) then shows the configuration of Fig(al, when relaxed
modynamically equivalerRE basing19] (i.e., basins having to mechanicalequilibrium by our quenching procedure. Al-
the same value of the structural paramepgr Hence we  though Fig. 1b) is mostly white spacéi.e., sixfold coordi-
believe that the structures obtained by our quenching proceyated atoms we include it here to illustrate the dramatic
dure will be thermodynamically equivalent to the actual IS ofreduction in defect number as a result of quenching from
the starting configuration. That is, they should be represenhermal equilibrium to mechanical equilibrium. It is apparent
tative of the set of IS associated with the thermodynamigo the eye that there are no free dislocations in the solid-
conditions of the equilibrium configuration. derived IS: every dislocation is closely bound in a
(vectorjcharge-neutral composite. We have also computed
the bond-orientational correlation functioBOCFs9 for the
various quenches. Obviously, for the solid-derived 1S, the
In earlier work [4] we performed a large number of BOCF has long-ranged order.
guenches of equilibrium systemsMt=4096. In the present On quenching from thémetastable equilibrium hexatic
work we increasé\ to 36 864 patrticles, in order to be able to phase, we obtain structures such as that shown in Figve.
guench from all three thermal phases: solid, hexatic, and ligdo not show the equilibrium defect configuration as the de-
uid. At this system size the quenches are very intensive confects are very denseClearly, there is a large density of
putationally. We have performed three quenches, followingdefects,even in mechanical equilibriunfor this case. Of
the procedure outlined above, for each phase, and severaburse, there are still some bound dislocations, some of
additional guenches that did not strictly enforce the requirewhich compose large-angle grain boundaries identifiable as
ment of monotonic decrease of the PE. The results werehains of very closely spaced dislocations. In addition to
qualitatively the same for all quenches derived from thethese—and in contrast to the crystal IS—there are many dis-
same starting phase. locations that do not have any “canceling” dislocations
Figure Xa) shows an equilibrium snapshot for the solid within several lattice spacings, some of which show a clear
phase. We plot only those atoms that are not sixfold coorditendency[20] to arrange themselves into small-angle grain
nated according to a Voronoi construction, labeling all suchboundaries. We term these the “free” dislocations for the IS;

Ill. RESULTS
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FIG. 3. Inherent structure obtained by relaxing an equilibrium
liquid configuration. The parameters are as in Figs. 1 and 2, except
. ? s T,=2.17. The large-angle grain boundaries, isolated in Fig. 2, span
" the sample here, and in all other liquid quenches we have done.
Bos s 8 Examination at finer scale shows no free disclinatiguisich would
75 : appear here as isolated 5's and)7’s
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knowledge, only been seen before in two-component
systems—in simulation$21] and in ball-bearing experi-

¢ ” ments[23].
? o f st . With the isotropic liquid as the starting point, our quench-
E b ing procedure results in structures such as that shown in Fig.
(b) 3. The two-stage melting theory predicts that the transition

from hexatic to isotropic liquid takes place via the unbinding
. ; ; ) ) _of disclinations(our 5's, 7's, etg. However, there are no
(Bmcest’a (S’tbats:gzzutﬁi’brrielﬁ:('n?hi i(e)g;%ltji?r??g gg:; ";thsésgfag?ifzs'ﬁree disclinations in any of our liquid-derived 1S. Rather, the
- CoE 2 . only additional defects, as compared to the hexatic phase,
sure P.,;= 20, from an equilibrium snapshot at=2.154. Again, . . .
only those atoms that are not sixfold coordinated are mari®d. are, as Is clear fro”? Fig. 3, pe_rcolatlng networks of large-
Enlargement of the boxed-in section(@j. Free dislocations appear angle_ grain boundarl_es. These in themselves can destro_y_ the
as 5-7 pairs, which are neither bound into neutral composites, nor iguasrlong-.ranged orientational orderlljg, as may be verified
large-angle grain boundaries. y qa}lcglatlng the BOCF fpr the IS of Fig. 3. In fac'F, both the
equilibrium snapshot and its IS show an exponential decay of
reasoning from the existence of the Peierls-Nabarro potersrientational order, with roughly the same exponjéit
tial, we argued above that free dislocatioiigresent in the Itis thus tempting to suppose that the equilibrium liquid is
equilibrium snapshot, will survive the quench and thus ap-also characterized by percolation of grain boundaries; i.e.,
pear in the I1S. Here, we claim that a comparison of Figs. that the hexatic— liquid transition takes place by grain-
and 2 graphically reveals the dislocation-unbinding transitiorboundary melting25]. Certainly[compare Figs. @) and 3
in the inherent structures the transition appears in the IS as a percolation of grain
We can also test this idea with the BOCF. While networksboundaries. However, we believe that eansee the unbind-
of large-angle grain boundaries are capable of destroying theg of disclinations in our IS, with a bit more effort.
quasi-long-range orientational order characteristic of the In Fig. 4 we show the quenching of an artificial starting
hexatic phase, those present in our hexatic quenches are ret&ndition whose only defects are four widely spaced discli-
tively small and isolated, so that this order is in fact pre-nations(two positive and two negatiyeThe corresponding
served. Log-log plots of the BOCFgg(r)] for a typical quenchedmechanically stablestructure is a roughly square
hexatic “MD snapshot”[6] and its associated quenched grain-boundary network, whose nodes correspond closely to
structure[5] reveal that both obey a power-law behavior, the positions of the original disclinations. The “free” discli-
with the IS showing a smaller expondgnk., a slower rate of nations of Fig. 4a) are (as expected not mechanically
algebraic decay of the orientational ordefhis may be at- stable; and they relax upon quenching to a network of grain
tributed to the removal, on quenching, of long-wavelengthboundaries, which serves as a “fossil relic” of the free dis-
torsional phonons, which are supported by the hexaticlinations in the starting configuration. This suggests that
phase’s finite Frank constant. there should be a strong correlation between the average
An IS of this nature has not been seen in any smalleseparation of free disclinations in an equilibrium configura-
system. In fact, if we use the word “glass” as shorthand fortion, and the average grain size in the corresponding
structural glass, i.e., an atomic configuration in mechanicatjuenched structure. We find further support for this idea
(but not thermal equilibrium, then Fig. 2 shows a hexatic from other quenches like that shown in Fig. 4: above a
glass. Two-dimensional glasses have mostly been studied uireshold separation distance, the grain size in the quenched
ing two or more atomic speci¢1-23, since the “frustra-  structure closely reflects the spacing of the original disclina-
tion” in 2D monatomic fluids is very smaliit is zero for the  tions. (For disclinations closer than the threshold distance,
2D packing problem [24]. Hexatic glasses have, to our the relaxed structure is a single graifihus, the fact that the

FIG. 2. (a) Inherent structure for 36 864 particles with periodic
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FIG. 4. (a) An artificial starting configuration for 4096 particles, constructed with four widely spaced disclinations of zero net scalar and
vector charge. Again we use periodic B@b) The relaxed structure fofa) (defects only. The free disclinations have vanished; what
remains is a network of grain boundaries that closely marks the original positions of the disclinations.

equilibrium and quenched configurations have nearly identias outlined above, by identifying groups of atoms whose
cal orientational correlation lengthi§] is consistent with the average coordination number is different from six, and which
presence of free disclinations in the equilibrium liquid. can be enclosed by a path consisting entirely of six-
It is also interesting to note that, while the transformationcoordinated atoms. If, for a given disclination, the smallest
shown in Fig. 4 is quite dramatic, the final configuration such path encloses more than one atom, the location of the
[Fig. 4(b)] still, in a sense, contains “free” disclinations. gjsclination is somewhat arbitrafgxcept, of course, that it
These are at the nodes of the grain-boundary network, whicBhould be somewhere within the enclosed prBar the pur-
are near the positions of the original disclinations of Fig.pose of illustration in the present work, we have used the
4(a). Disclinations are defined as centers of lattice rotation;fouowing rule: if the disclination is near a grain-boundary

that is, tracking the local lattice orientation, while making anode, we assign it to the appropriately coordinated atem (
closed circuit around a disclination, will show a net rotation. — g tor g positive disclination oz=7 for a negative discli-
Eor the p_resent case, this means that if we track the Or_ie”t_‘?‘fatiort nearest the node; otherwise, we assign it to the ap-
tion of six-coordinated cells, as we make a closed circuitygpriately coordinated atom nearest to the closest, opposite-
around a disclination, we will find a net rotation of some gigned disclination. Application of this procedure to the
integral multiple of7/3. The disclinations centered on the guenched structures of Figs. 2 and 3 results in the disclina-
five- and seven-coordinated atoms of Fie)4ive rotations  tjon arrays shown in Fig. 6. Comparison of these arrays with
of +m/3 and — /3, respectively. Similarly, on making a the structures from which they were obtained reveals that the
circuit enclosing a setA) of atoms whose average coordi- presence ohet disclinations is restricted to the vicinity of
nation number is different from six, we will find a net lattice large-angle grain boundaries. That is, Figs. 2, 3, and 6, con-
rotation—specifically, sidered together, are entirely consistent with the notion ob-
T tained from Fig. 4: that free disclinations, upon quenching,
9rot=§QAy relax to mechanically stable ISs in which a network of grain
boundaries marks the extent, and even positions, of the origi-
nal distribution of free disclinations. In this view, then, the
QA=i§ (6-2). 3.1 grain-boundary-percolation transition seen in our ISs is the
direct analog of the disclination-unbinding transition in equi-
Here,q, is the net “disclination charge” irA, andz; is the  librium. In other words, if the disclinations unbind, the grain
coordination number of atorn Of course, in order to prop- boundaries in the I$ustpercolate; and, on the other hand,
erly define this lattice rotation, we need a circuit consistingbound disclinicity appears in the IS as localiZed no) grain
solely of “good crystal” (i.e., six-coordinated cells Such  boundaries. Our net-disclination algorithm then simply
circuits do exist around the grain-boundary nodes of Figerases the grain-boundary network, revealing bound disclina-
4(b) (as shown in the closeup in Fig).3Hence we see that tions in our hexatic I§Fig. 6(@)] and unbound disclinations
there are, indeed, “net sevensg{=—1) and “net fives” in the liquid IS[Fig. &(b)].
(ga=1) at the grain boundary nodes, near the positions of Thus we believe that we have seeoth defect-unbinding
the original negative and positive disclinations, respectivelytransitions reflected in our IS. However, this conclusion re-
We next examine the distribution of such “net disclinic- quires a chain of reasoning that is not airtight. Hence, as a
ity” in our IS. In doing this, the disclinations are identified further test of the hypothesis that disclination unbinding me-
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FIG. 5. Enlargements of thé) upper-left and(b) lower-left
grain-boundary nodes of the quenched structure of Rig, 4orre-
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FIG. 6. The structures dfa) Fig. 2(a) and (b) Fig. 3, showing
only the “net” disclinations, as indicated in Fig. 5, and located by
the method described in the text. Each positive disclination is
marked by a “5,” and each negative disclination is marked by a
“7.” (@) We see that net disclinicity in the inherent structure is
confined to the region of large-angle grain boundaries. For the
hexatic IS this region does not span the sam(gFor the liquid
IS, both the grain boundarie@=ig. 3) and the net disclinations
(shown herg span the system. Hende) and (b) here show the
inherent-structures analog of disclination unbinding.

where the sum is over all pairs of atoms. According to Hal-
perin[26], the absolute value of this function should exhibit
(asymptotically a power-law decay when the disclinations
are boundbut interacting with a logarithmic potential, as in
the hexatic phageand an exponential decay for the case of
unbound disclinations. As suggested by Fig. 6, typical equi-
librium configurations contain relatively few candidates for
free disclinations. Additionally, at equilibrium there are very

sponding to positive and negative disclinations, respectively. SixInany non'_Sin()'djcoordinated atoms that do not Comprise
coordinated atoms are marked by asterisks’ while non_sixunbound dISC|InatI0nS—they are CompOﬂentS Of dIS|00atI0nS,

coordinated atoms are marked by their coordination numbers. Theoth stable and “virtual’—so that the disclination CCF
arrows are an aid to the eye, showing the lattice rotation on makingnust be extracted from the considerable noise resulting from

a circuit around the clusters having a net disclination charge.

diates the hexatie~ liquid transition, we have analyzed the
disclination distribution of the twequilibriumphases, using
correlation function

the disclination
(CCP:

“charge-charge”

go(r)=2> 8(r—ri))ga;,

these other defects. For these reasons, the elucidation of the
asymptotic behavior of the CCF requires long-time averag-
ing over very many equilibrium configurations. This is an
extremely time consuming process. We have obtained results
which, we believe, offer some evidence for the unbinding of
disclinations in the liquid phase. However, even after much
time averaging, our CCFs show meaningful behavior only
over a single decade of distance; hence we cannot claim that
this evidence itself is conclusive.

Our CCF results for 36 000 particles are presented in Fig.
7 (hexatic phaseand Fig. 8(liquid). The severe noise in
these data is clearly evident. However, we also believe that
there is clear visual support in these data for the hypothesis
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FIG. 7. The disclination charge-charge correlation function
[gq4(r), or “CCF,” as defined in the tet obtained for the equilib-
rium hexatic phas€36 000 particlesat T=2.154; (a) semilog;(b)
log-log plot. The distanceis in units of the Lennard-Jones param-
etero, in this figure and in Fig. 8. There is a range, approximately
2<r<20, which is not completely dominated by finite-size arti-
facts. In this range, the hexatic CCF is roughly linear on the log-log
plot (b), and hence concave upwards(a). We have studied system sizes 1-2 orders of magnitude be-

yond those of previous studies. This increase in size has
that the hexatic CCF is better fit by a power-law or subex-enabled us to obtain convincing differences amtngedis-
ponential form, while the liquid CCF is better fit by an ex- tinct phases in 2D.
ponential. Obviously one can only draw very tentative con- In particular, we find unambiguous evidence for the exis-
clusions from these data. However, from our experience wéence ofhexaticinherent structures, which are also hexatic
believe that further time averaging will not significantly re- (structura) glasses. Such structures do not appear at the level
duce the noise in these data; instead, larger systeritb N=4000[4], but are found aN=36 000—at which size the
larger numbers of defedtsieed to be examined. equilibrium hexatic phase is thermodynamically metastable
[6]. It is certain that the hexatic IS will persist for all larger
N. The question is the(in the language of IS can these IS
reach a balance of entropy and enefgjth increasingN)

Our principal conclusion from these studies is that thesuch that the hexatic phase becomes a true minimum of the
basic premise of inherent-structures theory is well confirmedree energy, in some part of the phase diagram? Beyond the
for 2D simple fluids. That is, inherent structures obtainedminimal criterion of showing the existence of such ISs, our
from differing equilibrium phases differ from one another in present results do not answer this question. However, more
gualitative and reproducible ways. Our own results extendletailed studies of the ISs reported here may allow further
those from previous IS studies of 2D fluifi3] in two ways.  progress.

FIG. 8. The disclination CCF obtained for the liquid &t
=2.327;(a) semilog;(b) log-log. Again there is approximately one
decade(in r) of data not dominated by noise. Here the CCF is
roughly linear on the semilog pldt), and so convex upwards on
the log-log plot(b).

IV. DISCUSSION
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Our results are also relevant to the KTHNY theory of potential-energy barriers. Hence we find that there tew@
two-stage melting. Besides the fact that we have shown thredistinct types of structural glasses for one-component,
“phases” of inherent structures—with the same types ofLennard-Jones fluids in 2D. These two types might be ex-
bond-orientational order as the corresponding equilibriunperimentally observable, although it seems likely that the
phases—we have also obtained graphic evidence for botfequired quench rates are too high. The idea however has
defect-unbinding transitions. The unbinding of dislocations.considerable interest. Just as the novel phases found in 2D
as one moves from solid-derived to hexatic-derived ISs, i%quilibrium phase diagrams have enhanced our knowledge of
apparent. In contrast, free disclinations &@parently not  the phases of fluid matter in general, so may unusual struc-
mechanically stabl¢Fig. 4], and so hidden in the liquid- tyre in a 2D “glassy phase diagram” be expected to offer

derived ISs. However, we have used a simple, deterministigeyy insights into our general understanding of glassy matter.
algorithm that identifies and reveals net discliniditg., that

not canceled by neighboring atomim any IS. This rule,
applied to our hexatic- and liquid-derived ISs, yields con-
figurations of defects showing a clear disclination-unbinding
transition. This latter transition shows up as a percolation We thank David Nelson for helpful comments regarding
transition for grain boundaries in the untransformed ISs; thdree disclinations and Ken Stephenson of the University of
net disclinations are thefypically) found at the nodes of the Tennessee’s Mathematics Department for generating starting
grain-boundary network. We have also obtained some furstructures such as that shown in Figa}4 This work was
ther evidence for disclination unbinding by studying the dis-supported in part by the Applied Mathematical Science Re-
clination charge-charge correlation function for the equilib-search Program, Office of Energy Research, and the Division
rium fluids. of Materials Science, U.S. Department of Energy, through

Finally, we reiterate that inherent structures are, in prin-Contract No. DE-AC05-840R21400 with Martin Marietta
ciple, structural glasses: nonequilibriufand disordered Energy Systems Inc. F.L.S. and G.S.C. were supported by
configurations trapped away from the equilibrium state bythe NSF under Grant No. DMR-9413057.
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